مشاهده فایلپیوست 162448
درود
حالا با اطلاعات اولیه و مقدماتی که در پست ۱ تقدیم شد به مطالعه و بررسی و تحلیل نقشه میپردازیم.
البته این مبحث نیاز به اطلاعاتی در خصوص سلف ها داره که چندان ساده نیست و خارج از حوصله تاپیک است و تاکنون تشریح نکردم و لذا این مبحث کمی پیچیده تر از بقیه مباحث است و نیاز به مطالعه مکرر تحلیل داره.
ازآنجاکه لحظه اول که تغذیه را به برق شهر متصل میکنیم ، ولتاژی در ثانویه ترانس وجود نداره و بتبع آن ۴۳۱ و کوپلر و ترانزیستور Q2 فعال نشده اند لذا بدلیل عدم هدایت کلکتور امیتر Q2 بخشی از جریان ۴ مقاومت ۱۸۰ کیلویی توسط Q2 مصرف نمیشه و لذا کل جریان ناشی از ۴ مقاومت ۱۸۰ کیلویی از بیس Q1 عبور میکنه و آنرا روشن میکنه و کلکتور امیتر Q1 مانند کلید وصل شده و هدایت میکنه و لذا ۳۱۰ ولت به اولیه ترانس متصل میشه .
به این ترتیب یک لحظه ولتاژی در ثانویه القا میشه ،
اما از انجاکه سیم پیچ ثانویه پایینی که وظیفه فیدبک را بعهده داره ولتاژی هم جهت با اولیه تولید میکنه لذا سیگنال مثبت و مناسبی از طریق R8 و D1 به بیس اعمال میکنه و از خاموش شدن ترانزیستور جلوگیری میکنه.
( و خازن C1 و D4 در لحظات روشن شدن ترانزیستور حالت سوئیچی ترانزیستور را تقویت میکنه تا هدایت ترانزیستور تدریجی نباشه و ناگهانی هدایت کنه ، البته D4 صرفا جهت شارژ خازن در نیم سیکل منفی نصب شده زیرا بدون این دیود شارژ خازن در زمان نیم سیکل منفی میسر نمیشه .)
و به این ترتیب ظرفیت سلف سیم پیچ اولیه و تعداد دور ثانویه ، تعیین کننده زمان روشن بودن ترانزیستور است .
برای بقیه تحلیل لازم است در این حد بدانید که :
(اگر ولتاژی به یک سلف یا سیم پیچ متصل و سپس قطع کنید بمحض آنکه ولتاژ را قطع کردید دو سر سلف ولتاژ معگوس و بسیار بالاتر از ولتاژ تغذیه ظاهر میشه و بصورت میرا ضعیف و ضعیف تر میشه.
مثلا اگه ۳۱۰ ولت را به اولیه ترانس متصل و قطع کنید در زمان قطع ، درواقع ولتاژ بینهایت ظاهر میشه اما ازآنجاکه ولتاژ بسمت بینهایت دارای انرژی ضعیفی هست لذا با دستگاه های اندازه گیری بخش قدرتمند آن قابل اندازه گیری است و مثلا حدود ۵۰۰۰ ولت مشاهده میشه که بصورت میرا هر لحظه ضعیف تر میشه
به همین دلیل با بوبین کلیه رله ها دیود معگوسی موازی میکنند تا ولتاژ بسیار بالا و معگوسی که القا میشه موجب صدمه ترانزیستور رله نشه.
و به همین علت D3 و C3 و R7 نیز با اولیه ترانس موازی کرده تا ولتاژ معگوس بسیار زیاد را ضعیف و خفه کنه.) حالا ادامه تحلیل
پس از آنکه انرژی القایی نیم سیکل اول پایان یافت در اینصورت مطابق قاعده فوق ولتاژ سیم پیچ فیدبک ، معگوس میشه و لذا فیدبک مثبت تموم میشه و ولتاژ منفی از طریق R8 و D4 در خازن C1 شارژ میشه و ولتاژی به بیس نمیرسه و Q1 خاموش میشه .
اما اینجا نکته ای قابل تامل است که وقتی فیدبک مثبت نداریم چرا مانند لحظه اول هم که فیدبک نداشتیم موجب روشن شدن Q1 نمیشه ؟
زیرا همانطور که در شرح بالا تاکید شد پس از قطع ولتاژ ، پلاریته ولتاژ در دو سر سیم پیچ اولیه معگوس و بسیار بالاست و بنابرین اجازه عبور ۳۱۰ ولت را نمیده بویژه که از ۳۱۰ ولت بسیار بزرگتر است .
از سوی دیگر ازآنجاکه الان ولتاژی در ثانویه بالایی ترانس که یکسو و ذخیره شده داریم لذا کوپلر و Q2 را نیمه فعال کرده و هدایت Q2 بخشی از جریان ۴ مقاومت را مصرف میکنه و لذا ولتاژ بیس Q۱ کم شده بطوریکه قادر به روشن کردن Q1 نیست .
بنابرین علاوه بر اینکه فیدبک مثبت نداریم ضمنا پلا یته معگوس ولتاژ اولیه و هدایت Q2 موجب خاموشی مطلق Q1 میشه .
پس از آنکه نیم سیکل دوم پایان یافت عوامل زیر مجددا موجب روشن شدن Q1 میشن.
۱- بواسطه سیگنال میرا پس از نیم سیکل دوم مجددا فیدبک مثبت در ثانویه بدلیل میرایی سیگنال ظاهر میشه هرچند ضعیف تر از فیدبک اولیه است اما با ولتاژ C1 که قبلا در نیم سیکل منفی ذخیره شده جمع شده و حتی بیشتر از لحظه اول از بیس عبور میکنه .
۲- ولتاژ معگوس اولیه نیز پایان یافته و لذا با ۳۱۰ ولت مخالفت نمیکنه که موجب قطع شدن جریان بشه ولتاژ مفیدی ناشی از میرایی سیگنال با ۳۱۰ ولت جمع شده و از اولیه ترانس و Q1 عبور میکنه.
۳- ولتاژ ثانویه بالایی نیز رو به کاهش گذاشته و لذا کوپلر و Q2 هم بسمت خاموشی رفته و لذا بخشی از جریان ۴ مقاومت را مصرف نمیکنه و لذا ولتاژ بیس Q1 بمقدار لازم بالا میره و Q1 را روشن میکنه.
و با روشن شدن Q1 داستان فوق تکرار میشه و این نوسانساز طی مراحل فوق تا ابد نوسان میکنه
مقاومت R9 و D2 و D5 برای محدود ساختن ولتاژ مثبت و منفی سیم پیچ فیدبک پیش بینی شده و بعبارتی بخش مضر سیکل مثبت و منفی سیم پیچ فیدبک را خفه و حذف میکنه
اما چگونه ولتاژ خروجی را کنترل و تثبیت میکنه بسیار ساده است و قبلا در تاپیک مشابه تحلیل کردم.
و لذا قطعا علاقمندانی که با نحوه کنترل ولتاژ آی سی های سوئیچینگ آشنا شده اند در این نقشه هم قادر به درک و تحلیل عملکرد کنترل ولتاژ هستند.
لذا اگه علاقمندان بخش باقیمانده را یاری و تحلیل کنند قبلا مراتب سپاس و تقدیر خود را اعلام میدارم.
حالا اینورتر ابتکاری بسازید.
اکنون با استفاده از تحلیل فوق میتوانید اینورتر ابتکاری و تک ترانزیستوری طراحی کنید و بسازید.
بطوریکه با استفاده از تحلیل فوق میتوانید از ترانس معمولی ۳ سر یا سر وسط بنحو ابتکاری بگونه ای استفاده کنید که سیم پیچ ثانویه با کلکتور امیتر یک ترانزیستور سری شود و همچنین بخشی از سیم پیچ ۳ سر که هم جهت با سیم پیچ فوق باشه به بیس برسه تا نوسانساز ابتکاری شبیه روش فوق داشته باشیم .
البته ازآنجاکه تهیه ۳۱۰ولت مستقیم مانند باطری در دسترس نداریم و بناگزیر باید از باطری ۶ یا ۱۲ ولت و امثالهم استفاده کنیم و از طرفی نمیتونیم از سیم پیچی استفاده کنیم که تعداد دور بالایی داره و لذا باید از سیم پیچ ۳ سر یا بخشی از آن بعنوان اولیه استفاده کنیم که تعداد دور کمی داشته باشه لذا از سیم پیچ دیگر که قبلا اولیه بوده و برای ۲۲۰ ولت برق شهر سیم پیچی شده بود و اینجا ناگزیریم بعنوان ثانویه استفاده کنیم که تعداد دور بسیار بالایی داره و ولتاژ بالا دراختیار میگذاره ، لذا جریان قابل توجهی نداره اما ۲۲۰ ولت ضعیف و با توان پایین را قابل استفاده میکنه و لذا با این روش ابتکاری میتونیم اینورتر ضعیفی بسازیم که ۶ یا ۱۲ ولت را به ۲۲۰ ولت تبدیل کنه.
سپاس
اینم اینورتر بسیار ساده و کوچکی که جناب سجاد عزیز با همین شیوه فقط با
یک ترانس معمولی ۱۲ولت
دو مقاومت
و یک ترانزیستور
ساختند و نتیجه را با ولتاژ تغذیه ۶ ولتی جهت روشن کردن لامپ ۲۲۰ ولتی در پست ۲۵ و با تصویر زیر اعلام فرمودند.
مشاهده فایلپیوست 162535
مشاهده فایلپیوست 162688